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Abstract

Resolving the structural variability of proteins is often key to understanding the structure–function relation-
ship of those macromolecular machines. Single particle analysis using Cryogenic electron microscopy
(CryoEM), combined with machine learning algorithms, provides a way to reveal the dynamics within
the protein system from noisy micrographs. Here, we introduce an improved computational method that
uses Gaussian mixture models for protein structure representation and deep neural networks for confor-
mation space embedding. By integrating information from molecular models into the heterogeneity anal-
ysis, we can analyze continuous protein conformational changes using structural information at the
frequency of 1/3 �A�1, and present the results in a more interpretable form.

� 2023 Elsevier Ltd. All rights reserved.
Introduction

Inside cells, proteins and other macromolecules
perform various tasks through dynamic
interactions among their own components or with
other molecules. Studies of the structural flexibility
of those macromolecules are often key to
understanding how they accomplish their
functions. Cryogenic electron microscopy
(CryoEM) takes snapshots of macromolecules
frozen in vitrified ice, providing direct information
about the compositional/conformational states of
individual protein particles. While the structural
heterogeneity is often a limiting factor for the high
resolution structure determination using CryoEM,
with the help of advanced computational methods,
it also presents the opportunity to directly visualize
the dynamic process of protein assembly and
conformational changes, leading to insights on the
functioning mechanism of the macromolecules.
Over the past few years, multiple methods have

been developed that address the structural
td. All rights reserved.
heterogeneity in CryoEM. Both traditional
statistical inference approaches and deep learning
based methods have been implemented to tackle
this problem, and have achieved success in
analyzing various real CryoEM datasets1–4 (a
detailed review of them can also be found in this
special issue5). Among those methods, we focused
on the development of computational protocols that
represent the structure of proteins as a Gaussian
mixture model (GMM) and resolve the composi-
tional and conformational heterogeneity of the pro-
teins using deep neural networks (DNN).6 By
representing the protein density map as the sum
of many Gaussian functions, the method greatly
reduces the computational complexity of the prob-
lem and makes it possible to capture the structural
variability of highly dynamic systems. For structures
at 3–5 �A resolution, the GMM representation often
requires less than 1% of the resource compared
to the voxel based representation (Figure 1(A)).
The Gaussian representation also provides a way
for the researchers to focus the heterogeneity anal-
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Figure 1. Building Gaussian models from neutral state density maps. (A) Resource usage comparison
between the voxel based representation and the GMM based one. Note the y axis in the plot is in log scale. (B)
Workflow for building a neutral state GMM from the corresponding density map. The first round of training matches
the output GMM from the decoder to the coordinates of the molecular model, and the second round of training
maximizes the similarity between the projections of the density map and the projections of the GMM.
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ysis on individual domains of interest, making it
easier to interpret continuous conformational
changes within the system.
Gaussian models provide a natural way to bridge

CryoEM density maps and molecular models. In
fact, to measure the similarity between the
CryoEM map and the corresponding atomic
model, one typical way is to generate a density
map by placing a Gaussian function for each atom
in the model and computing the FSC between the
simulated map and the CryoEM structure.7 Addi-
tionally, Gaussian falloff at the location of each atom
is also used to measure the quality of the CryoEM
structure.8–9 In this work, we further exploit the con-
nection between the GMM representation of protein
structures and the molecular models and develop
new algorithms that guide the heterogeneity analy-
sis of CryoEM datasets using information from the
models. Prior information from models helps over-
come low SNR in individual particles at high resolu-
tion and provides extra constraints for the analysis
of complex systems.
Tomake themodel guided heterogeneity analysis

possible, we start by developing a memory efficient
implementation of the GMM, which can now
represent protein structures and dynamics at 3 �A
or higher resolution. With the new implementation,
we show three distinct ways to integrate
information from molecular models into
heterogeneity analysis. First, a hierarchical GMM
is used to model the large scale global movement
within the target protein. Second, an alternative
DNN architecture is adopted to model the
localized domain motion as rigid body movement.
Finally, we introduce an approach that regularizes
heterogeneity analysis at high resolution using
2

bond constraints from the corresponding
molecular models. In addition, we also present a
way to combine multiple modes of heterogeneity
analysis methods for the same system, focusing
on different parts of the protein and different
resolution ranges, to provide a more
comprehensive view of the dynamics of
macromolecules.
Related Work

Wewill now give a brief overview of other recently
developed techniques for continuous
heterogeneous reconstruction in cryo-EM. The
most conceptually similar to our work are,10–11

which use pseudo-atomic models to represent the
molecule using a variational auto-encoder (VAE)
architecture. However, while they can perform
ab initio reconstruction, they have only been
demonstrated on synthetic data and require a good
initialization. On the other hand, our method
assumes that a reference volume is provided. Sim-
ilar ideas are also developed in 3DFlex,12 which
produces a deformation field of a canonical struc-
ture, not unlike the decoder presented in our work,
although it represents the molecule using a vox-
elized volume rather than atoms or pseudo-atoms.
The methods in13–16 model the conformation vari-
ability using several normal modes and their coeffi-
cients, and output a pseudo-atomic model.
Specifically, works such as13–14 combine normal
mode analysis with Monte Carlo sampling or molec-
ular dynamics simulations respectively, while15–16

leverage the power of deep neural networks to esti-
mate the coefficients of the normal modes. By con-
trast, our method manipulates the pseudo-atom
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coordinates directly, which allows the user to control
the granularity of the output model that is fit to the
data. As for heterogeneous methods that recon-
struct a voxelized volume, a recent follow-up work
on CryoDRGN1 is CryoFIRE,17 which in addition
performs ab-initio reconstruction using amortized
learning. Moreover,18 uses score-based diffusion
models to improve the sampling of the latent space
of CryoDRGN, showing significant benefits. The
advantages of using pseudo-atomic models such
as the GMM over the voxelized representation have
been discussed in the Introduction section. Lastly,
the methods in19–22 apply manifold learning tech-
niques either to the particle images directly or to
the volumes (obtained, for example, through homo-
geneous reconstruction applied to bootstrapped
subsets of the data) and further post-processing to
obtain the conformation landscape. For details
about these methods, we encourage the reader to
refer to the review article in the same issue of this
journal.5
Methods

Following the previous implementation of the
method,6 a pair of DNNs is used to analyze the
structural variability from a CryoEM single particle
dataset. The first DNN, the encoder, takes the infor-
mation from individual particles and maps them
onto a low-dimensional latent space where each
point represents the conformation of one particle.
To ensure the continuity of the latent space, a ran-
dom variable following a Gaussian distribution is
added to the output from the encoder, mimicking
the behavior of a variational autoencoder, except
that the width of the distribution is not trainable.
The second DNN, the decoder, takes the coordi-
nates from the conformational space and outputs
a set of parameters that define the GMM: the 3D
coordinates, amplitude and width for each Gaus-
sian function. Then, a projection image is generated
from the GMM at the same orientation of the input
particle and the similarity between the GMM projec-
tion and the particle image is used as the loss func-
tion for the training of the encoder-decoder pair.
Using the autoencoder architecture, the DNNs are
trained to learn the dynamics within the protein sys-
tem from a set of particles, whose orientations are
predetermined from a single model refinement,
without human supervision.
Memory efficient implementation of GMM

One difficulty in the previous implementation is
the limitation of GPU memory. While the GMM
representation itself only requires minimal memory
usage, a large block of memory is required when
generating 2D images from the GMM. For N
Gaussians and image dimension of M � M pixels,
the previous implementation consisted of
computing the discretized projection of each
3

Gaussian and summing them pixel-wise to obtain
the final projection image, which requires the
storage of N � M � M pixel values. Alternatively,
an efficient way to implement the projected image
of a sum of N Gaussians on a M � M grid is to
take advantage of the separability of the Gaussian
function. Specifically, a Gaussian gu;v ;wðx ; y ; zÞ
centered at ðu; v ;wÞ 2 R3 can be written as a
product of 1D Gaussian functions in each
dimension gu;v ;wðx ; y ; zÞ ¼ guðxÞgv ðyÞgwðzÞ,
where guðxÞ is a 1D Gaussian centered at u 2 R:
Then, the projection image Iðx i ; y jÞ on the plane
z ¼ 0 of a sum of N Gaussians is given by:

Iðx i ; y j Þ ¼
XN

k¼1
guk ;vk

ðx i ; y j Þ ¼
XN

k¼1
guk

ðx i Þgvk
ðy j Þ ð1Þ

where ðx i ; y jÞ 2 R2 are the coordinates of the pixel ði ; jÞ
for i ; j ¼ 1; :::;M.
Defining the matrices Gx ;Gy 2 RN�M such that

the i-th column of Gx is ½guk
ðx iÞ�k¼1;:::;N

and the j-th
column of Gy is ½gvk

ðy jÞ�k¼1;:::;N
, for i ; j ¼ 1; :::;M,

the projection image I, written as a matrix
I 2 RM�M , is given by:

I ¼ Gx
TGy : ð2Þ

In the previous implementation, N projection
images of M � M pixels are created, one for each
Gaussian in the GMM, and then summed pixel-
wise to obtain the particle projection image,
following equation (1). In the current
implementation following equation (2), only two
N �M matrices are created (Gx and Gy ) before
the final projection image I is obtained by matrix–
matrix multiplication.
In the above presentation, we consider the widths

and amplitudes of the Gaussians constant, but this
approach can be extended in a straightforward
manner to widths and amplitudes that vary for
each Gaussian. Indeed, in our current
implementation, we allow for variable amplitude.
This approach has been used in the context of
CryoEM for obtaining projection images of a GMM
in the real domain,10 while in this work we perform
the projection in the Fourier domain.

Building GMMs from molecular models

In the previous work, the GMM was directly built
from the consensus structure by training the
decoder from scratch using the projection images.
While this approach has stable performance for
low to intermediate resolution structures, the
convergence of the training process can be slow
when the GMM involves thousands of Gaussian
functions, and the structure is determined at 3–5 �A
resolution. To speed up the GMM generation
process and enable the utilization of molecular
model information, we re-designed the process so
the decoder can be initialized from existing
molecular models. Either full atom models of the
protein or pseudoatom models seeded from the
density map can be used to initialize the training
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of the decoder. In some situations, particularly when
the CryoEM structure contains unmodeled
densities, the two approaches need to be
combined to produce the initial GMM. For
example, to build the GMM of membrane proteins
embedded in nanodiscs, in addition to the
molecular model of the protein, extra Gaussian
functions need to be seeded on the lipid density to
fully represent the structure.
To build the GMM frommolecular models, we first

fit the model to the density map of the consensus
structure in visualization software such as UCSF
Chimera.23 When unmodeled densities are present,
we subtract the density around the existing atoms
from the consensus structure, then seed pseu-
doatoms on the unmodeled density map using a
K-means algorithm on the coordinates of remaining
voxels in 3D real space.24 Then, to build the deco-
der, we initialize its weights with random small val-
ues and train it using gradient descent so that the
coordinates of the Gaussian functions from its out-
puts match the coordinates of the atoms from the
input model. Meanwhile, the amplitude and width
of Gaussian functions are left constant during this
initial training. Finally, starting from the pre-trained
decoder, we perform another round of iterative
training to minimize the difference between the pro-
jection images generated from the output GMM of
the decoder and the projections from the consensus
3D structure (Figure 1(B)). The Gaussian coordi-
nates are locally optimized to fit the density map,
and the amplitude and width of the Gaussian func-
tions are adjusted to match the occupancy and local
resolvability of the corresponding protein domains.
In addition, bonds between the atoms from the
molecular models can also be considered during
the training process as regularization factors, so
that the resulting GMM satisfies the biochemical
constraints. Detailed implementation of the bond
constraints will be discussed in the following
sections.

Heterogeneity analysis for large datasets

While the new implementation lifts the GPU
memory limitation for the representation of the
GMM, special consideration is still required to
handle large datasets containing hundreds of
thousands of particles. To reduce the usage of
CPU and GPU memory during the analysis,
instead of feeding all particles directly into the
DNN, we divide the dataset into smaller subsets of
particles, and process them sequentially. The
number of particles in each subset is decided
based on the available memory of the computer.
For each subset of particles, the program loads
the DNNs trained from the previous rounds, trains
for a given number of iterations on the subset of
particles, and saves the trained DNNs back to the
hard drive. Then, both CPU and GPU memory
usage is cleared and the program proceeds to the
next subset. Finally, after the training converges, a
4

final pass through the data is performed in order
to compute the conformation of each particle
using the saved encoder.
In addition, during the training process, a subset

of particles (10% by default) can optionally be
separated to form a test set to be used to monitor
the convergence. The test set loss still provides a
useful metric to monitor the training performance
and decide the number of iteration required in
future jobs.

Large scale global morphing with hierarchical
GMMs

In many situations, even when the structure of a
protein achieves 4 �A or better in “gold-standard”
resolution and atomic models can be built from the
structure, global, large-scale movement can still
be present within the system.25–27 While most of
the particles are at the conformations close to the
consensus structure, making high resolution struc-
ture determination possible, a small fraction of par-
ticles still undergoes significant conformational
changes that can be observed at low resolution.
The large-scale movement at the domain level will
further drive the movement of secondary structure
elements (SSEs) within the domain, as well as the
motion of high resolution features such as the loops
connecting the SSEs and the sidechain of each
residue. To have a comprehensive view of the
structural heterogeneity of a protein, it is critical to
study the system in a hierarchical way. However,
due to the complexity of protein movement and
the nature of DNNs, it is challenging to train a model
that describes the conformational change of the
protein at all resolution ranges in a single step
approach. To address this problem, we designed
a hierarchical set of GMMs that are embedded in
the DNN architecture, which connects the large-
scale morphing of the protein to the corresponding
movement of high resolution features.
To model the multi-scale movement of the protein

complex hierarchically, we start by building two
GMMs from the consensus structure of the
protein: a large GMM with thousands of Gaussian
functions that match the protein density map at
the measured “gold-standard” resolution, and a
small one with only a few (<100) Gaussian
functions that fit the density map at a low
resolution where the large scale movement can
still be observed. Then, we build an MxN transition
matrix based on the distance matrix between the
Gaussian coordinates of the two GMMs, where M
and N are the numbers of Gaussian functions in
the small and larger Gaussian models. The
weights in the matrix are initialized as exp(-
50*D^2), where D is the pairwise distance
between the two GMMs. As such, by multiplying a
set of vectors that describe the movement of the
small GMM with this matrix, each of the vectors
can drive the movement of Gaussian functions in
a local region from the large GMM, enabling the
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coordinated movement of the two GMMs
(Figure 2(A-D)). Conceptually, the small GMM
serves a similar role to the “deformation flow field”
in the 3DFlex implementation.12 Here, the Gaussian
representation presents a natural way to connect
the flow field to the high resolution 3D structure,
making it more straightforward to set up the system
without having to parameterize the structure into
finite element meshes.
In the first round of heterogeneity analysis, the

initial decoder output is an Mx5 matrix of small
random values. The output is then multiplied by
the MxN transition matrix, and the resulting Nx5
matrix is added to the large GMM built from the
consensus structure. The initial training process
compares the projection images from the large
Figure 2. Modeling large scale movement. (A) Diagram
of training, target low resolution FRC and train only the deco
the decoder and the transition matrix and target high resol
overlayed with the small GMM (red). (C) Example movement
morphing of large GMM driven by the movement in C. (E
analysis. (F) Neutral GMM, with the target domain highligh
movement of the target domain.

5

GMM and the particle images, using a Fourier ring
correlation (FRC) loss function that only considers
low resolution information. At this stage, since the
weights in the transition matrix are constant, and
we only focus on the low resolution signal, it is
relatively easy for the encoder-decoder pair to
converge to an optimal solution. After the first
round of training converges, we move on to
include the high resolution signal in the
heterogeneity analysis. In the second round of
training, we convert the transition matrix into a
trainable dense layer of the decoder and append it
to the existing layers of the DNN. As a result, the
decoder now directly outputs an Nx5 matrix that
can alter the coordinates and amplitude of the
large GMM corresponding to the low resolution
hierarchical GMMs for global morphing. In the first round
der. In the second round of training, train weights in both
ution FRC. (B) Coordinates from the large GMM (blue)
trajectory of the small GMM. (D) Quiver plot showing the
) Diagram of GMM-DNN based rigid body movement
ted in red. (G) Learned eigenvectors of the rigid body
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conformational change it learned from the first
round of training. Finally, we train the encoder-
decoder pair again, this time including the weights
in the transition matrix as trainable variables and
using the FRC of the full resolution range as the
loss function. The second round of training refines
the low resolution movement the DNNs captured
in the first round, and extracts the movement of
high resolution features corresponding to the large
scale conformational change.

Modeling localized domain movement using
rigid body motion

One set of problems often encountered in
CryoEM studies is proteins with rigid cores but a
few highly flexible domains.28–30 The core parts of
the protein remain consistent amongmost particles,
thus the structure can be determined at high resolu-
tion, while the flexible domains are smeared out in
the averaged structures. To resolve the large-
scale, localized movement of the flexible domain,
wemodel themovement of one domain with respect
to the other parts of the protein as a rigid body
motion. By assuming the features within the target
domain rotate and translate as a whole, the problem
of heterogeneity analysis is greatly simplified and it
becomes easier to model highly nonlinear and long-
range conformational changes. The properties of
Gaussian functions make it convenient to represent
the system in either real or Fourier space, providing
a good way to focus the heterogeneity analysis on
any specific domain of the protein. The rigid body
transform of a target domain can be simply repre-
sented by shifting the coordinates of Gaussian func-
tions corresponding to that domain while keeping
the location of other Gaussian functions
unchanged. Since the full GMM is used to generate
the projection images, this will not produce any
seam line between the target domain and the other
parts of the protein, or any mask induced artifacts in
the Fourier space.
The first step for rigid body motion based

heterogeneity analysis is to define the domain by
selecting a group of Gaussian functions in the
model. This can be done by providing a volumetric
mask to select all Gaussian functions whose
centers fall under the mask, or by specifying
indices of atoms in the molecular model. When
there are existing models of the target domain,
they can also be used in building the initial neutral
state GMM, as well as defining the boundary of
the domain. This can be particularly helpful when
large scale movement is present in the system,
since the smearing in the neutral model can alter
the size and shape of the target domain in the
consensus structure density map.
To model the domain movement as rigid body

motion, instead of parameters for a GMM, we
redesign the decoder so it maps each point in the
latent conformation space to a 1x6 vector,
representing the three Euler angles and the
6

translation parameters for the target domain for
one single particle. A 3D rotation matrix can be
generated from the vector, and multiplying this
matrix with the coordinates of Gaussian functions
within the domain will transform the target domain
according to the parameters from the decoder
output. During the heterogeneity analysis, the
transformed target domain, combined with the
neutral state GMM of the other parts of the
protein, is used to generate the projection images.
Finally, training loss is computed by comparing
the projection images with the particles, and the
encoder-decoder pair is optimized to capture the
trajectory of the rigid body movement of the target
domain (Figure 2(E-G)).
High resolution heterogeneity analysis with
bond constraints

In addition to the coordinates of atoms from the
molecular model, the connectivity between the
atoms can also be used as prior information to
guide GMM-DNN based heterogeneity analysis.
The usage of bond constraints ensures that the
decoder prefers GMMs at biochemical viable
conformations, making it easier to extract
biologically meaningful information from the noisy
particle images. Here we focus on the C-alpha
backbone models of the target protein, and use
the distance between neighboring C-alpha atoms,
as well as the angle between each C-alpha-C-
alpha pseudobond to guide the heterogeneity
analysis at 4 �A or better resolution.
To utilize the bond information, we first calculate

the distance between every adjacent C-alpha
atom and the angle between each C-alpha
pseudobond from the existing backbone model at
the neutral state. When an existing full atom
model is present, the backbone model can be
parsed from the atomic model. Otherwise, the
backbone model can also be built automatically
from the CryoEM density map using various
software tools.31–32 During the training process,
both when refining the neutral state GMM to fit the
averaged structure, and during heterogeneity anal-
ysis using the particles, we calculate the same C-
alpha distances and angles each time a GMM is
generated by the decoder. The distances and
angles are compared to their corresponding values
from the neutral backbone model, and a small reg-
ularization term is added to the training loss based
on the average difference between the neutral
model and the GMM produced by the decoder at
any conformational state. The regularization term
forces the output GMM to match the conformation
of individual particles without significantly altering
the geometry of the backbone model locally. For
example, individual alpha-helices can tilt as part of
a conformational change, but the C-alpha atoms
along the helix will still generally keep an alpha-
helix formation during such motion.
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Coordinating structural heterogeneity analysis
of multiple modes

In a complex protein system, very often multiple
modes of conformational change, such as the
movement of two separate domains, exist
simultaneously. To have a thorough
understanding of the structural dynamics of the
protein system, it is necessary to not only study
each movement mode separately, but also
investigate the correlation between the different
modes of structural variability. The masking
functionality in the GMM-DNN based analysis
already provides a convenient way to study the
structural heterogeneity of different parts of the
protein independently, and here we also present a
protocol that combines multiple DNNs to study the
coordination of the different modes of movement
within the protein.
Theoretically, it is possible to simply focus the

heterogeneity analysis on different parts of the
protein independently, and study the correlation
between the movement modes by analyzing the
particle distribution in multiple conformational
spaces produced by the different encoders using
statistical methods. However, given the complexity
of the protein conformational changes, the noise in
particle images, as well as the nonlinearity in the
embedding methods, direct correlational analysis
of the encoder outputs may not yield meaningful
information. To address this issue, we study the
coordinated movement by combining the encoders
while keeping the separate decoders. That is, we
use only one encoder that maps the information of
the particles to a conformational space, combined
with multiple decoders that take the same
conformation input from the encoder, but map it to
the conformational changes at different parts of
the protein. Since the decoders are entirely
independent, different architectures, including the
new functions listed above, can be used to
address different types of heterogeneity in the
target domain. For example, we can have one
decoder focusing on the large scale rigid body
movement of a specific domain, and another one
that uses backbone model constraints for the more
subtle conformational change in a more rigid part
of the protein. The output of each decoder would
be the offset of GMM parameters with respect to
the neutral model, so for each particle, the results
from multiple decoders can simply be summed
together to generate the GMM representing the
conformation of that particle. In practice, to
facilitate the convergence of the heterogeneity
analysis, we start by optimizing the encoder and
only one decoder to model the conformational
change within one domain, normally the one with
the largest scale of movement. Then, in the
second round of training, we can include other
decoders to extract the more subtle structural
changes in other parts of the protein that correlate
with the motion in the first target domain.
7

Results

Trpv1 (empiar-10059)

The first example we used to demonstrate the
improvement of the heterogeneity analysis method
is a single particle dataset of TRPV1 embedded in
nanodisc.25 From this public dataset, the structure
of TRPV1 can be determined at 3 �A “gold-
standard” resolution with C4 symmetry from
�200,000 particles. While the transmembrane
domains of the protein show apparent side-chain
features, the ankyrin repeats (AR) domain outside
the lipid nanodisc was not as well resolved. So, in
this example, we used the hierarchical GMM
approach and targeted the global, large-scale
movement of the AR domain.
First, a GMM with 8000 Gaussian functions was

constructed to match the density map at 3 �A
resolution (Figure 3(A-B)). This was done by first
seeding pseudoatoms from the density map, then
converting it to a GMM and refining it against the
projection images of the consensus structure.
Meanwhile, a small GMM with only 32 Gaussian
functions was also built using the same method
that represents the same consensus structure at
20 �A resolution. A hierarchical model was
constructed using these GMMs, and used for the
heterogeneity analysis of the particles. At the
beginning of the analysis, we expanded the
symmetry of the structure to C1 by duplicating
each particle four times at the four symmetrically
equivalent orientations. The first round of analysis
only optimized the parameters of the small GMM,
and used particle-projection FRC at 15 �A or lower
resolution as the loss function. After the training
converges, the second round of heterogeneity
analysis was performed on unbinned particles to
refine the movement of the fine features. Principal
component analysis was performed on the point
cloud in the latent space to extract the
eigenvectors, which represent the most dominant
modes of movement within the system. Along one
of the eigenvectors in the resulting conformation
space, the helices in the AR domain underwent a
global rotation of 6 degrees, while the helices in
the transmembrane domain remained static. Other
interesting conformational changes can also be
observed along other vectors in the conformation
space, including the movement of AR domains on
the opposite sites toward the center of the
complex, as well as the global tilting of the
domains from all four asymmetrical units (Figure 3
(C)).
The entire heterogeneity analysis process is

performed on one Nvidia GTX 3090 GPU with
24 GB memory. The generation of neutral state
GMM took only 48 seconds, and occupied 4.8 GB
GPU memory. The initial round of heterogeneity
analysis, which uses signals up to 15 �A, takes 12
minutes and 19 GB GPU memory for each subset
of 20,000 particles. The second round of



Figure 3. Heterogeneity analysis results from the TRPV1 dataset. (A) Neutral state structure. (B) Close-up view
of a transmembrane helix from the neutral state GMM. Blue dots represent the coordinates of Gaussian functions
used in the model. (C) Three different movement modes of the TRPV1 AR domain shown in morphed atomic models,
including the rotation of AR domains around the symmetry axis, movement of opposite AR domains toward the center,
and global tilting of all AR domains. (D) Comparison of the first movement mode visualized as density maps
reconstructed from particles at nearby conformations, as well as morphed atomic models. The two colors represent
the first and last frames of the movement trajectory. (E) Quantifying the scale of different movement modes shown in
C using histograms of per atom movement distance. The distance is measured from the morphed models at the first
and last frames of the movement trajectory, covering 98% of the particles.
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heterogeneity analysis, which targets 3�A resolution
and optimizes both the large and small GMM, takes
33 min and 22 GB GPU memory for each 20,000
particle subset.
After the GMM based heterogeneity analysis, we

converted the movement trajectory of the GMM to
the movement of the molecular model to better
visualize the different modes of conformational
changes in 3D. This was done by simply treating
the molecular model of the protein as another
layer of the hierarchical GMM. Starting from an
existing atomic model of TRPV1 fitted into the
consensus density map, we constructed a
transition matrix between the large GMM and the
coordinates from the atomic model, the same as
the transition matrix between the small and large
GMM. By multiplying the GMM offsets produced
by the decoder with the transition matrix and
adding the offset to the neutral state atomic
model, we can morph the molecular model to
produce structures at any state from the
conformation landscape. The models generated
8

using this method fitted well into the density maps
reconstructed from particles at the same
conformation, and provided a more quantitative
description of the conformational changes within
the system (Figure 3(D-E)). The clear matching of
the maps derived from raw particles and the
models generated by the DNNs suggested that
the motion learned by the DNN-GMM system
indeed represents the actual conformational
changes in the particles.
GLP-1 receptor (EMPIAR-10346)

In the second example, we used a public dataset
of the GLP-1 receptor to show the new functionality
of rigid body movement and model guided
heterogeneity analysis.33 While an averaged struc-
ture can be determined at 3.8�A “gold-standard” res-
olution from the � 500,000 particles through a
homogeneous refinement, the extracellular domain
(ECD) nearly vanished in the structure, and some
helices in the transmembrane domain were not as
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well resolved. Here, we analyzed the large scale
movement of the ECD using the rigid body analysis,
and modeled the coordinated conformational
change of the transmembrane helices using the
bond constraints from the molecular model.
To build the GMM, we first seeded Gaussian

coordinates at C-alpha positions according to the
full atom model (PDB:6ORV) deposited with the
dataset. Then, the consensus density map was
filtered to 10 �A so the densities of lipid nanodisc
and the ECD show up, and the remaining
Gaussian coordinates were placed on the
unmodeled densities. The two GMMs, which
include 2100 Gaussian functions, were combined
and refined against the consensus structure
targeting 4 �A resolution. The C-alpha bond length
and angle constraints, which were derived from
the molecular model, were used to regularize the
refinement of neutral GMM (Figure 4(A-B)). Two
decoders were used to model the conformational
change within the system, one targeting the rigid
body motion of the ECD, and the other focusing
on the movement of the transmembrane helices.
The heterogeneity analysis started from training
the encoder together with the first decoder, which
outputs the rotation/translation parameters for the
Figure 4. Heterogeneity analysis results from the GLP-
an existing molecular model (PDB:6ORV). (B) Close-up view
Blue dots represent the coordinates of Gaussian functions a
during DNN training. (C) Conformational change along the
The maps are filtered to 5 �A to emphasize the movement of
corresponding molecular models. (E) Cross section of E, sh
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ECD with respect to the rest of the protein, using
information up to 15 �A resolution to extract the
large-scale domain motion from the particles. After
the first round of training converged, we included
the second decoder and started another round of
training. During training, the second decoder was
only allowed to adjust the position and amplitude
of the Gaussian functions corresponding to the
transmembrane helices, and the C-alpha bond
constraints were included as a regularizer.
Along the motion trajectory represented by the

first eigenvector from the conformational space,
the ECD was tilting up and down with respect to
the membrane plane, while also swinging
horizontally (Figure 4(C-D)). The overall rotation of
the ECD along the motion trajectory was around
30 degrees. Correlating to the tilting of the EDC,
movement of the transmembrane helices can also
be observed. The extracellular end of
transmembrane helix 1 (TM1), which directly
connects the ECD, shifted by as much as 8 �A
from the first to the last frame of the trajectory.
Additionally, large movement at the extracellular
end of TM3 and TM6 can also be observed along
the trajectory (Figure 4(E)).
1 receptor dataset. (A) Neutral state structure fitted with
of transmembrane helices from the neutral state GMM.
nd the bonds between them are used for regularization
first eigenvector, with corresponding molecular models.
helices. (D) Overlay of the first and last frame of C with
owing the movement of helices.
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Discussion

One of the major difficulties in single particle
heterogeneity analysis is the low signal-to-noise
ratio (SNR) in individual particle images. The
problem becomes even more challenging when
we look at the structural variability of proteins at
higher resolution, as more nonlinearity is required
to model the conformational changes of fine
protein features, and the SNR decays even further
at high spatial frequencies. To facilitate the
structural variability study of macromolecules
using information at high spatial frequency, the
latest development in the GMM-DNN based
heterogeneity analysis methods focuses on
handling the complexity of the problem using prior
information from molecular models. By focusing
on the large-scale morphing of a fine grain model,
or the rigid body motion of a specific domain, we
reduce the scale of the solution space to facilitate
the convergence of the DNNs. The bond
information from the molecular models provides
extra constraints for the analysis, which is
particularly useful in extracting biochemically
meaningful protein conformational changes,
instead of the random variability in particle images
caused by noise.
The sheer complexity of the dynamics within the

protein complexes presents another difficulty for
the heterogeneity analysis. Often a single domain
of a protein can exhibit continuous conformational
changes with multiple degrees of freedom, and
multiple domains of the same protein can move
independently, or coordinate to perform a single
function. The high complexity of the system
makes it harder to train the DNNs to converge,
and even when the training converges, it can be
challenging for human researchers to decipher the
latent space of the DNNs and make meaningful
conclusions about the protein system. The
masking capability of the GMM method makes it
possible to analyze a highly dynamic system using
a divide-and-conquer approach. Building one
encoder-decoder pair focusing on one individual
domain makes it easier for the training process to
converge without intensive hyperparameter tuning,
and also more convenient for a human to inspect
and rationalize the conformational changes
learned by the DNNs. Furthermore, the multi-
decoder approach introduced in this work makes it
possible to investigate the correlation between the
movement of different domains, and obtain a more
comprehensive view of the dynamics of the
macromolecular system.
Building GMMs according to the molecular

models also makes it possible to convert a GMM
at any conformational state back to the
corresponding molecular model. This provides a
convenient way to directly visualize the
conformational changes learned by the DNNs.
Since the DNNs consolidate the information from
10
all particles as well as the biochemical constraints
to produce the conformation space, the model
generated from any individual point in the latent
space can contain more information than the
average structure reconstructed from nearby
particles in the latent space. This feature is
particularly useful when multiple degrees of
freedom are present in the system so that the
particle count in each individual state is low, or
when we are interested in a transient state along a
path of conformational change.
The development of new functionality for the

GMM based heterogeneity analysis presented in
this article leads to a flexible software platform
that can be used to test the performance of
different modules of the protocol. To speed up
training, small sample datasets with clear
structural variabilities are constructed to test
various algorithms. The platform is implemented in
a modular form using a Jupyter notebook and
each step can be easily replaced to test
alternative methods. The platform, along with the
documentation and sample datasets, will be
distributed in the near future, so other method
developers can implement new heterogeneity
analysis algorithms under this framework. The
software tool itself, with all the new features
described in this manuscript, is already available
through the command line program
e2gmm_refine_new.py in EMAN2,34 and corre-
sponding documentation can be found through
eman2.org.
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