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Abstract

Macromolecules change their shape (conformation) in the process of carrying out their functions. The
imaging by cryo-electron microscopy of rapidly-frozen, individual copies of macromolecules (single parti-
cles) is a powerful and general approach to understanding the motions and energy landscapes of macro-
molecules. Widely-used computational methods already allow the recovery of a few distinct conformations
from heterogeneous single-particle samples, but the treatment of complex forms of heterogeneity such as
the continuum of possible transitory states and flexible regions remains largely an open problem. In recent
years there has been a surge of new approaches for treating the more general problem of continuous
heterogeneity. This paper surveys the current state of the art in this area.

� 2023 Elsevier Ltd. All rights reserved.
Introduction

Over the past few years, the combination of cryo-
electron microscopy (cryo-EM) imaging and single-
particle analysis has been established as the
method of choice for studying the structure of
large protein complexes at atomic or near-atomic
resolution.1 Its recent success has been enabled
by advances in detector technology, sample prepa-
ration techniques and the availability of advanced
image processing software packages. The two
other major structure-determination methods are
X-ray crystallography, which requires the sample
to be crystallized, and NMR, which is useful only
with relatively small proteins.
Cryo-EM single-particle analysis (we will denote

this simply as cryo-EM) involves the imaging of
individual copies (called particles) of a
macromolecular structure. Through the
computational processing of 104 to 106 of such
particle images, 3D density maps can be obtained
td. All rights reserved.
through single-particle reconstruction. To density
maps of sufficient resolution, atomic structures
can then be fitted, with � 4 �A being the worst
resolution for successful ab initio fitting. Because
the macromolecules are suspended in solution
before they are rapidly frozen, particle images are
likely to reflect a more native conformation, but
also may contain frozen instances of flexibility or
conformational variation. Therefore, one of the
promises of cryo-EM is that researchers will be
able to construct a complete picture of all the
possible conformations of the imaged structures.
Conformational changes are key to the function of

many macromolecular machines. The molecular
motors dynein and kinesin undergo cyclical
changes as a chemical reaction (hydrolysis of
ATP) drives a mechanical stepping motion that
moves cargo along a microtubule filament.
Glucose transporters allow cells to take up this
nutrient through a conformational cycle that
enforces the transport of one or two Na+ ions with
Journal of Molecular Biology 435 (2023) 168020
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each glucose molecule. DNA replication is carried
out by the replisome, a large combination of
molecular machines that, in stepwise fashions,
unwind the double-stranded DNA and synthesize
new complementary DNA strands.
While existing methods excel at reconstructing

clearly-defined discrete conformations from cryo-
EM data, the problem of reconstructing
continuously-varying conformations of a
macromolecule is where most state of the art
methods fall short. This is the continuous
heterogeneity reconstruction problem. Fortunately,
there has been a surge in the effort devoted to
developing computational tools for continuous
heterogeneity reconstruction, and this is the focus
of this survey article. Our aim is to highlight the
defining characteristics of each method and the
conceptual overlaps and differences between them.
We note that there are many ideas and

approaches for continuous heterogeneity and
many papers introduce multiple new ideas and
combine multiple approaches. For brevity and
clarity, we cluster together different works and
omit important implementation details. This paper
covers the conceptual families of ideas and does
not make specific recommendations about
software to use. Some of the work surveyed is
theoretical or less accessible to the user. Where
available, we included links to some of the
software that may be more accessible.

Complementary surveys

There are a number of recent surveys covering
other aspects of the cryo-EM pipeline.
A general review of the computational challenges

and the main components in the analysis pipeline
are available in.2 A comprehensive description of
the mathematical aspects of the problem, focusing
on homogeneous reconstruction and validation, is
available in.3

Discrete heterogeneity is discussed in.4 A survey
of earlier work on continuous heterogeneity, with a
comprehensive survey of normal mode analysis
(the section ‘‘Normal Modes and Predefined
Spaces of Conformations’’) is available in.5 In,6

the focus is on the interpretation of the energy land-
scape resulting from the heterogeneity analysis
using likelihood-based methods. An up-to-date
overview of the full cryo-EM pipeline, from sample
preparation to the latest reconstruction methods,
including time-resolved cryo-EM is available in.7

The recent reviews8,9 focus on machine learning
approaches to cryo-EM. Specifically, the former
gives an overview of machine learning algorithms
used in each step in the cryo-EM pipe-line, from
pre-processing and particle picking to 3D recon-
struction and post-processing, while the latter is a
thorough survey of deep generative modeling tech-
niques for 3D reconstruction.
In this review, we summarize the state of the art

methods for analyzing continuous heterogeneity in

2

cryo-EM. Our aim is to sort the main families of
ideas in the area and convey some of the main
ideas of each technique.

Outline of the paper

We first discuss a simplified image formation
model that most cryo-EM reconstruction methods
assume, as well as discrete heterogeneous
reconstruction and multi-body refinement, in the
‘‘Preliminaries’’ section.
In the ‘‘Manifold Learning on Particle Images’’ and

‘‘Manifolds of Volumes’’ sections, we describe
manifold learning approaches to continuous
heterogeneity reconstruction, specifically applied
to particle images and reconstructed volumes
respectively. In the ‘‘Principal Volumes and Linear
Models for Volumes’’ and ‘‘Normal Modes and
Predefined Spaces of Conformations’’ sections,
we discuss linear models based on covariance
estimation and normal mode analysis respectively.
In the ‘‘Nonlinear Models: Hyper-Molecules’’

section, we discuss nonlinear models for
continuous heterogeneous reconstruction which
conceptually fit into the “hyper-molecules”
framework, including traditional and deep learning
algorithms. In the ‘‘Bypassing the Estimation of
Latent Variables’’ section, we discuss inference
methods based on distribution matching.
Finally, we conclude the article with a discussion

in the ‘‘Discussion and Perspectives’’ section.

Preliminaries

Image formation model and homogeneous
reconstruction

In this section, we discuss a simplified model for
image formation that is the basis of all the
approaches in this survey. For simplicity, we begin
this discussion with a model for the tomographic
projections of a single conformation in the
homogeneous case. While each specific method
may be a variation of this model and contain
additional details, this model provides a useful
baseline.
Let V rð Þ represent the electrostatic potential of

the molecule of interest in a specific conformation
at location r 2 R3. Throughout this survey, we will
use the terms volume and density interchangeably
to refer to V.
The particle images Ii (i ¼ 1; . . . ;M) are given by

the following linear model of the image formation
process:

I i ¼ Ci � T i � P � Rið ÞV þ gi ; ð1Þ
for i ¼ 1; . . . ;M, where Ri is a 3D rotation operator
corresponding to the orientation of the volume V ;P is
the 2D projection operator, T i is the 2D translation
operator corresponding to the offset of the projected
volume with respect to the center of the image, Ci is
the contrast transfer function (CTF) operator applied to
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the projected image and � denotes the composition of
these operators. Both Ri and T i are latent variables
specific to each particle image Ii and are not known in
advance. The CTF operator Ci can be different for
each particle image, and in our simplified discussion
we assume that it is known. For simplicity, we assume
that the particle images are cropped in advance from
the larger micrograph produced by the microscope.
Lastly, Gaussian noise gi is applied to each

image. In reality, the noise introduced in cryo-EM
images is shot noise,10 but the Gaussian assump-
tion is commonly used in the reconstruction litera-
ture. While the details of the noise model and its
estimation are specific to each reconstruction
method, in our discussion we assume, for exposi-
tion purposes, that the noise parameters have been
estimated in advance. For example, RELION com-
putes the radial power spectrum of the noise during
the homogeneous reconstruction.11

Remark 1 Cryo-EM algorithms make extensive
use of the Fourier transform of images and
density functions for efficient representation and
computation. While the distinction between
representations and operations in the Fourier
domain and in the spatial domain is very important
in implementations, it is not specific to the study of
heterogeneity. For brevity, we omit the detailed
discussion of Fourier vs. spatial domain
implementations in different algorithms and focus
on the main ideas that are specific to the study of
heterogeneity.
In the case of homogeneous reconstruction, the

usual approach is to solve the maximum-a
posteriori (MAP) problem given the set of particle
images Iif g:
argmaxV ln p V j I if gð Þ; ð2Þ

where the log-posterior distribution is given by:

ln p V j Iif gð Þ ¼
XM
i¼1

ln

Z
/i

p Ii jV ;/ið Þp /ið Þd/i þ ln p Vð Þ: ð3Þ

Here, the likelihood function p Ii jV ;/ið Þ is
Gaussian and determined by the image formation
model (1), and the rotation and the translation
Ri ;T i of each particle image are paired into one
pose variable /i whose assumed joint distribution
is denoted by p /ið Þ. From a Bayesian point of
view, p /ið Þ and p Vð Þ play the role of priors (of the
pose and the volume respectively), and in some
methods (e.g., RELION), they are adjusted
iteratively during reconstruction.
A For software, see for example the RELION https://relion.readthe-
docs.io or CryoSPARC https://cryosparc.com packages.
B For software that performs multi-body analysis, see RELION in
footNote A.
Discrete heterogeneity

The traditional approach to the heterogeneity
problem is to perform 3D classification, where
each particle is assigned to one of a small number
of different, optimized reference volumes (in some
algorithms, a probability of assignment to each
references volume is considered). This works best
when the underlying macromolecule has a small
3

number of discrete states, and these are
distinguishable in the set of single-particle images.
The main assumption here is that the reference

volumes obtained are a good representation of the
different conformations of the macromolecule,
which requires the removal of the outliers before
reconstruction and that each class contains
enough particle images for the reconstruction to
be possible. Usually the number of reference
volumes, or classes, is specified in advance, but it
can change during optimization if some classes
are not very populated.12

First introduced in,13 this method consists of max-
imum likelihood or maximum-a posteriori optimiza-
tion for K different volumes, or K classes,
V 1 rð Þ; . . . ;VK rð Þf g. Then, the log posterior distribu-
tion (3) becomes:

lnp Vkf gj Iif gð Þ ¼XM
i¼1

ln
XK
k¼1

Z
/i

p Ii jk ; Vkf g;/ið Þp k ;/i j Vkf gð Þd/i

 !

þ
XK
k¼1

ln p Vkð Þ: ð4Þ

The K volumes are usually initialized as low-
resolution reconstructions from K randomly drawn
subsets of the particle images, and the
optimization can be performed, for example, with
the expectation–maximization algorithm13,11,14 or
with stochastic gradient descent or its variantsA.15,12
Multi-body extension of traditional analysis

A step up in complexity is the multi-body
refinementB.16–18 Here, the volume is assumed to
consist of a small number of rigid components that
move relative to each other and are identical across
the particle images.
This method starts with applying standard

homogeneous reconstruction techniques to obtain
a consensus reconstruction of the bulk of the
volume. Then, the user specifies a set of 3D
masks that define regions of the volume
containing individual components that move with
respect to the bulk. Each of these components is
treated like a rigid body. Lastly, independent
homogeneous reconstruction is performed for
each component using the particle images where,
for each component reconstruction, the CTF-
affected 2D projections of the other components
have been subtracted from the particle images.
The subtraction is done either before the separate
components reconstruction step16,17 or during the
reconstruction process in an iterative fashion.18 In
the latter approach, the relative orientation of each

https://relion.readthedocs.io
https://relion.readthedocs.io
https://cryosparc.com
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component is refined for each particle image and
updated at every iteration before subtraction, which
leads to improved results.
One obvious disadvantage of this approach is

that it relies on the user’s previous knowledge of
the structural domains of the molecule and,
therefore, it is susceptible to human bias. In
addition, multi-body refinement is limited to rigid
variability and has difficulty at the interface
between the moving components.
C For the ManifoldEM/ESPER software, see the code repositories:
https://github.com/GMashayekhi/ManifoldEM_Matlab, https://github.-
com/evanseitz/ManifoldEM_Python, https://github.com/evanseitz/
cryoEM_ESPER.
Conformation space

Given a set of particle images, the objective of
traditional homogeneous reconstruction is to
recover a single volume which, according to the
forward model (1) (or a variation of it), generated
the particle images. When there is conformational
heterogeneity that a single homogeneous
reconstruction model cannot capture,
homogeneous reconstruction algorithms recover
some average structure (or even worse, corrupted
structures). Similarly, the main underlying
assumption in discrete heterogeneous
reconstruction is that the particles cluster around a
small number of distinct dominating structures,
which the reconstruction process aims to recover.
In both cases, an important step of the data pre-

processing is the removal of outliers that do not fit
with any of the structures that one wants to
recover. Moreover, information from particles on
the boundary between different “discrete”
structures, which may represent rare or less likely
conformations, is lost when they are assigned to
one of the volumes or classified as an outlier.
The strength of cryo-EM for structure

determination of biological samples is that it is
able to capture the sample and its conformations
without being constrained to a crystal lattice. Cryo-
EM observes individual molecules rather than
crystal ensemble averages. Therefore, avoiding
averaging of these conformations through
reconstruction of one or several discrete volumes
is a key motivation for continuous heterogeneity
reconstruction.
While the output of homogeneous or discrete

heterogeneous reconstruction consists of a small
number of discrete volumes, the output of
continuous heterogeneity analysis should capture
the full space of conformations of the molecule.
This often takes the form of a low-dimensional
manifold. The specifics vary significantly between
different techniques. Throughout this survey, we
will refer to this manifold as the conformation
space or latent space representation. Given such
a manifold and a coordinate vector on it, one
should be able to recover a volume corresponding
to the conformation at those coordinates. In
Figure 1, we illustrate examples of volumes along
a trajectory in the conformation space for the
calmodulin protein.
4

Manifold Learning on Particle Images

One of the first ideas for characterizing
continuous heterogeneity in cryo-EM was based
on the observation that a continuous space of
volumes could be represented mathematically as
a manifold of volumes; similarly, the space of
particle images, which are the projections of
different molecules in different viewing directions,
form amanifold of images.19 Manifold learning tech-
niques are usually based on organizing observa-
tions (particle images) based on a norm of the
difference between every two observations. The
study of cryo-EM data as a manifold of particle
images presents several challenges. For example,
in the simplest form of manifold learning, each vari-
able such as the viewing direction, in-plane rota-
tions, in-plane translations, and CTF, introduces
additional dimensions to the problem, making the
analysis impractical even before considering the
heterogeneity. Furthermore, the technical proper-
ties of the difference between particle images lead
to mathematical difficulty in identifying the observed
manifold with the product SO 3ð Þ � s of viewing
directions and heterogeneity space. Finally, the
high level of noise in cryo-EM makes the difference
between particle images noisy. A sequence of fol-
lowup work introduced additional ideas to make
the analysis practical20–25 by assuming known view-
ing directions and analyzing the manifold of confor-
mations as viewed from each direction using the
diffusion map algorithm 26; the maps are then aligned
across all different directions either by using nonlin-
ear Laplacian spectral analysis (NLSA)24 or a novel
algorithm ESPERC.25

Experiments performed using simulated data in25

show that the conformation manifold is not con-
structed well for certain projection directions where
the range of the conformation variability is small.
The manifold embeddings are also affected nega-
tively by insufficient samples for each state in the
range and low SNR, effects that are equally visible
for both PCA and Diffusion Maps. To circumvent
these issues, ESPER25 rotates the manifolds’ coor-
dinates (eigenfunction realignment) so that each
dimension of the heterogeneity variable is captured
in a separate eigenbasis of the embedding. Then, a
subspace partitioning procedure is performed to
assign particles to each state along the trajectory
representing the continuous heterogeneity and pro-
duce a 2D movie for each viewing direction. The
direction of each movie is determined using optical
flow and belief propagation using the method in,23

after which the individual states along the trajectory
can be reconstructed using standard homogeneous
reconstruction methods.

https://github.com/GMashayekhi/ManifoldEM_Matlab
https://github.com/evanseitz/ManifoldEM_Python
https://github.com/evanseitz/ManifoldEM_Python
https://github.com/evanseitz/cryoEM_ESPER
https://github.com/evanseitz/cryoEM_ESPER


Figure 1. Examples of conformations of the calmodulin protein along a trajectory on its conformation manifold
(illustration). Volumes obtained with UCSF ChimeraX version 1.4 (2022–06-03) using its morph function and the
structures from the Protein Data Bank with entryIDs 1CFD and 3CLN.
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The manifold approach in this section is
characterized by sidestepping the modeling of the
volumes themselves during the analysis. Instead,
this approach aims to build a map of
conformations for each viewing direction. Once
the map is available, one selects particle images
from many viewing directions of roughly the same
conformation and reconstructs that conformation
from the particle images using traditional
reconstruction algorithms. In the following
sections, we will discuss approaches that rely on
explicit modeling of the volumes.
Manifolds of Volumes

Many of the challenges presented in the previous
section can be avoided by applying manifold
learning techniques directly to volumes, which is
the approach we discuss in this section. Clearly,
cryo-EM experiments produce tomographic
projections, not volumes. Therefore, the approach
in this section of not self-contained in most cases.
One work on manifolds of volumes in27 assumes
that the volumes are given. A later method in28 gen-
erates the volumes by performing 3D classification
of reconstructed volumes from a number of boot-
strapped subsets of the data.
Once the volumes are available, both methods

propose a way of obtaining the low dimensional
embedding corresponding to the manifold of
conformations. In StructMapD,27 the volumes are
aligned using rigid body alignment as well as flexible
alignment using their normal mode representations
(which will be discussed in the ‘‘Normal Modes and
D StructMap is distributed as part of the ContinuousFlex plugin for
Scipion (see footNote 7).

5

Predefined Spaces of Conformations’’ section), and
define a dissimilarity matrix which is then used to per-
form multi-dimensional scaling. For the specific
details, see.27 In AlphaCryo4DE,28 the low dimen-
sional manifold embedding is obtained by first
extracting features from the volumes using an
autoencoder neural network and then applying t-
SNE29 to the volumes and their features.
Once the low dimensional manifold of

conformations is obtained, one can analyze the
conformational landscape, for example by
performing clustering on the embedding, or high-
resolution homogeneous refinement based on
specific regions of the manifold.
Since this approach relies on volumes that are

produced by some other methods, in inherits
some difficulties in generating such volumes from
other methods. That being said, many of the
methods in the remaining sections involve some
components of dimensionality reduction or
manifold learning on the latent conformation
space, which are conceptually related to the
methods in this section and the previous section.
In particular, a different take on manifold learning
of volumes, presented in30 combines manifold
learning techniques with covariance estimations
that we discuss in the next section.

Principal Volumes and Linear Models
for Volumes

The approaches in this section and the remaining
sections incorporate generative models that
describe the space of conformations directly. This
E The AlphaCryo4D code can be found at https://github.com/
alphacryo4d/alphacryo4d/ and

https://github.com/alphacryo4d/alphacryo4d/
https://github.com/alphacryo4d/alphacryo4d/


F Code for the principal volumes method is available as part of the
ASPIRE software package http://spr.math.princeton.edu, as well as
in CryoSPARC with its 3D variability analysis functionality (link given
in footNote 1).

B. Toader, F.J. Sigworth and R.R. Lederman Journal of Molecular Biology 435 (2023) 168020
is in contrast to the ‘‘Manifold Learning on Particle
Images’’ section, which maps the conformation
space without creating an internal representation
of the space of possible volumes, and in contrast
to the ‘‘Manifolds of Volumes’’ section, where the
manifold is not inherently a generative model (with
some exceptions such as30 which integrates ideas
from the ‘‘Manifolds of Volumes’’ and ‘‘Principal Vol-
umes and Linear Models for Volumes’’ sections).
One approach to representing the densities is

based on linear combinations of a number of
given principal volumes. These principal volumes
are a subset of the principal components of the
dataset consisting of all the volumes represented
by the particle images (see more details after Eq.
(6)). In this representation, we have a reference
volume, which we denote by X 0, and K principal
volumes, which we denote by Xkf gKk¼1. The
density Vm :¼ V m; �ð Þ of a particular conformation
is provided as a linear combination of the principal
volumes,

Vm � X 0 þ
XK
k¼1

bm
k Xk ;

where the coefficient bm
k is the weight that the k-th

principal volume receives in the m-th conformation;
there is one conformation (and one set of coefficients)
corresponding to each particle image. The coefficients

bm
k are different for each conformation and can be

positive or negative, and the principal volumes are
often chosen to be orthogonal to each other, such thatR
Xk xð ÞXn xð Þdx ¼ 0 if k – n (excluding X 0). Once the

principal volumes are obtained, the standard practice is
to visualize each principal mode separately. The
expression for the movie of the k-th principal mode as
a function of “time” s (negative or positive) is

Vk sð Þ ¼ X 0 þ sXk : ð6Þ

We call s “time” here because the common way to

visualize the principal volume is a movie that shows Vk

at a sequence of values of s, with consecutive frames
representing small increments in s. The small
increments in s imply small differences in the volumes

Vk sð Þ rendered in the movie, yielding a smooth movie
of transitions between states. Importantly, s does not
imply any relation to the temporal behavior of the
actual molecule. More specifically, s can be seen as a
conformation variable in a subset of the conformation
space determined by the principal volume Xk .
If the volumes in different conformations were

given (and aligned), a natural optimal choice of
principal volumes Xk is obtained by a standard
Principal Component Analysis (PCA) of the
densities. This idea was first introduced in31 and fur-
ther developed in,32 where the volumes are
obtained by homogeneous reconstruction using
resampled subsets of the particle images.
Remarkably, the authors of33,34 demonstrate that

it is possible to estimate the 3D covariance matrix
and principal volumes directly from the 2D particle
6

images under mild assumptions. This surprising
fact is evident from the expressions for the covari-
ance in Fourier domain, extending the Fourier slice
theorem. Specifically, in,34 appropriate estimatorseXM and RM for X 0 and the covariance matrix R0

are defined using least-squares optimization prob-
lems. These estimators are shown to be consistent,
i.e. they converge to l0 and R0 as the number of
particle images M tends to infinity. Finding lM and
RM then involves solving two linear systems. The
work in35–37 improves the solvers, both in terms of
scalability and generality. The authors of33 propose
a probabilistic PCA approach, where the principal
volumes are estimated directly from the data with-
out first computing the covariance matrix R0. This
method is improved in38 and in39 (implemented in
CryoSPARC), which allow reconstruction of vol-
umes of higher resolutionF.
The interpretation of heterogeneity based on the

modes in (6) is widely used in practice and has
been demonstrated in several examples.35,38,39

However, as discussed in more detail in,40 the
covariance method has limited applicability to
high-resolution approximation of large continuous
conformational variability. The problem, in a nut-
shell, is that high-resolution large continuous con-
formational variability does not behave like Eq.
(6). Instead, one would require a larger number of
high-resolution principal volumes and to identify
specific combinations of coefficients bm

k in Eq. (5)
that represent valid conformations.
A refined and potentially more interpretable

analysis is proposed in.30 Each particle image can
be best explained as a tomographic projection of a
particular volume that is a specific linear combina-
tion (Eq. (5)) with particular coefficients bm

k . This
translates each particle image to an approximate
volume, which can then be used for manifold learn-
ing on volumes (the ‘‘Manifolds of Volumes’’ sec-
tion). The algorithm in30 further extends the
manifold-learning approach to produce refined
basis volumes, called spectral volumes, that are
compatible with the recovered manifold.
A key limitation of this approach to the analysis of

heterogeneity is the prerequisite of known viewing
directions for each particle image. Large
conformational heterogeneity makes it challenging
to define and compute consistent viewing
directions.
Normal Modes and Predefined Spaces
of Conformations

In this section, we discuss a direct representation
of the positions of atoms (or pseudoatoms) in each
conformation. Let rl ¼ x l ; y l ; zlð Þ| be the position of

http://spr.math.princeton.edu
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the l-th atom (or a pseudoatom) in a molecule, and
let r ¼ r|1; r

|
2; . . .ð Þ| 2 R3N be the concatenation of

the coordinates of N atoms.
The structural variability of molecules can be

simulated and studied computationally by Normal
Mode Analysis (NMA).41 NMA produces a lin-
earized model for small perturbations around a ref-
erence location of the atoms. The best reference
structure is an (already determined) atomic model
of the molecule, where the way in which the protein
is folded will distinguish rigid (e.g. hydrogen-
bonded) from non-rigid regions. An alternative but
much less powerful approach treats a low-
resolution envelope of the molecule (say, as deter-
mined by cryo-EM) as an elastic structure. In this
model-free NMA, larger pseudo-atoms are used
for a coarse representation of the molecule.
Analogously to the ‘‘Principal Volumes and Linear

Models for Volumes’’ section, the positions of atoms
rn in any conformation can be approximated by a
linear combination of the normal modes Dkf gKk¼1

added to the reference positions r0:

rm � r0 þ
XK
k¼1

bm
k Dk ð7Þ

where the coefficients bm
k determine the amplitude of the

perturbation in the m-th conformation and each set of

coefficients bm
k

� �K
k¼1

corresponds to a particle image.

The coefficients bm
k are different for each conformation,

and they can be positive or negative. While the normal

modes Dkf gKk¼1 are determined by the physics of the

molecule, the coefficients bm
k

� �K
k¼1

are chosen so that

the conformations fit the cryo-EM particle images.
The starting point of NMA is defining a potential

function of the energy of the reference
reconstruction, which is usually considered to be a
low energy conformation.
There are two distinct approaches to obtaining

the reference structure: a model-based approach,
where the reference structure is obtained from the
atomic model of the molecule of interest, and a
model-free NMA, where larger pseudo-atoms are
used for a coarser representation of the molecule
(obtained, for example, from a volume determined
using cryo-EM). The quality of the normal modes
varies with the quality of the model.
Then, the normal modes are the eigenvectors of

the Hessian of the potential function, with the
normal modes corresponding to the large
eigenvalues describing large, collective motions of
atoms and the modes corresponding to small
eigenvalues describing more localized motions.
Once the normal modes are approximated from
an approximate model of the molecule, cryo-EM
comes into the heterogeneity analysis to find the
that best combination of normal modes to explain
each particle image.
In,42 a simple potential function that models the

distances between pairs of close atoms as har-
monic oscillators is introduced and is shown to
7

accurately describe collective motions of atoms in
a molecule as well as more complex and computa-
tionally expensive potential that explicitly model
bond lengths, bond angles and dihedral angles. A
web server allowing a user to compute the normal
modes of a protein based on this idea is described
in,43 and the same idea enables recent approaches
like HEMNMA44 to scale to full cryo-EM datasetsG.
In early work in the context of cryo-EM, NMA has

been used for flexible fitting of high resolution
structures from X-ray crystallography to low-
resolution maps from cryo-EM45 and for finding
new conformations of a previously determined
structure.46 These ideas are taken further in
HEMNMA,44 a method for computing the conforma-
tional space of a reference structure by fitting the
normal mode coefficients bm

k that best explain each
observed particle image in a cryo-EM dataset. This
works by iteratively refining the normal mode coeffi-
cients and pose coordinates (rotation angles and
translations) for each particle image.
In,47,48 global collective motions described by

NMA are combined with local atomic displacements
given by Hamiltonian Monte Carlo sampling or
molecular dynamics simulations. In
DeepHEMNMA,49 a deep neural network is trained
on particle images, normal mode coefficients and
pose parameters obtained from HEMNMA for a
subset of the data, which then outputs the corre-
sponding normal mode coefficients and pose
parameters for the remaining data. In,50 an unsu-
pervised learning approach is used to estimate nor-
mal mode coefficients and in-plane rotations, while
in,51 the coefficient of one normal mode is sampled
using a deep encoder neural network together with
the CTF defocus and in-plane orientation of the
particle.
Subsets of particle images that have similar

values of coefficients are assumed to have the
same conformations; such subsets can be used to
reconstruct the volume directly from the images,
or the conformations can be better visualized in a
lower dimensional space by performing PCA on
the normal mode coefficients. An important
prerequisite for the algorithms is the reference X 0

and its atomic model, which is used to compute
the normal modes Dkf gKk¼1.
WarpCraft52 models continuous heterogeneity by

using normal mode analysis to combine different
components of the volume, which avoids the down-
sides of multi-body refinement of rigid components.
A comprehensive discussion of NMA is available

in41 and in the context of cryo-EM in.5

There are other approaches based on the physics
of themolecules to provide conceptually related, but
very different conformation spaces. Specifically,
in,53 molecular dynamics simulations are biased

https://github.com/scipion-em/scipion-em-continuousflex
https://github.com/scipion-em/scipion-em-continuousflex
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with cryo-EM data by sampling a posterior deter-
mined by an energy function that combines a stan-
dard molecular dynamics energy term and one that
takes into account the cryo-EM data, and in,54 Cryo-
BIFE uses a Bayesian approach to extract the free
energy profile of a molecule directly from cryo-EM
images together with its uncertainty.
Remark 2 We note that in most normal mode

analysis work described in the current section, the
space of conformations is predetermined by the
fixed normal modes expressed in Eq. (7). These
normal modes are not inherently based on cryo-
EM data, but rather on some external predefined
model of the molecule (although that model might
be derived from some reference homogeneous
model reconstructed from cryo-EM data).
H The CryoDRGN software is available at https://cb.csail.mit.edu/cb/
cryodrgn.
Nonlinear Models: Hyper-Molecules

In the ‘‘Principal Volumes and Linear Models for
Volumes’’ and ‘‘Normal Modes and Predefined
Spaces of Conformations’’ sections, we discussed
linear models, and in the ‘‘Manifold Learning on
Particle Images’’ section, we discussed a
nonlinear approach based on manifolds of two-
dimensional tomographic projections. In this
section, we discuss nonlinear models for the
volume V. The general formulation of nonlinear
models in cryo-EM, laid out in,55,56 models all the
conformations of the molecule in one hyper-
molecule function V s; rð Þ, where s is the conforma-
tion variable (position in the conformation space)
and r is a point in space (or a frequency). In the sim-
plest case, s :¼ s is a scalar and the functionV s; rð Þ
is analogous to a movie: if we fix a point s in “time”
we obtain a single conformation V s; �ð Þ analogous
to a single still frame in a video. In other words,
V s; rð Þ is a complete description of a continuum of
conformations. More generally, s can be a high
dimensional vector capturing complex continuous
heterogeneity. For example, when s is two dimen-
sional, one can imagine a planar map where each
point represents a conformation.
The hyper-molecule function V s; rð Þ has been

implemented in many different ways in different
works.
It can be argued that a continuous model can be

approximated with a sufficiently large number of
discrete samples, or a sufficiently large number of
classes in 3D classification in cryo-EM. This would
be analogous to the sequence of individual frames
that represents a movie. However, the discrete 3D
classes are analogous to an unordered collection
of frames, which is not as interpretable as a
movie. More importantly, the relation between
adjacent frames in a video reduces the amount of
information required to represent the movie
(indeed, compressed videos are more efficient
than a collection of images representing the same
frames); this is loosely translates to fewer particle
images one would need in order to recover V s; �ð Þ
8

compared to the number of particle images
required to recover a very large number of
discretized classes. We revisit the motivation for
continuous functions more formally in the
‘‘Continuous vs. discrete models’’ section.
Orthogonal basis functions

The hyper-molecule V s; �ð Þ can be represented in
different ways. The first classic harmonic analysis
approach proposed in55,56 uses linear combinations
of orthogonal basis functions Pk :

V s; rð Þ ¼
X
k

akPk s; rð Þ: ð8Þ

One practical implementation of (8) is a product of three
dimensional basis functions (such as prolate spheroidal
functions57,58,56) and one dimensional basis functions.
The principle was demonstrated to work using a

stochastic gradient decent like algorithm on
synthetic data in,55 and using a Markov Chain
Monte Carlo (MCMC) algorithm and synthetic and
real data in.56 In both cases, the viewing direction
and conformational state are not assumed to be
known a priori. While55,56 argue the hyper-
molecules are the natural generalization of tradi-
tional 3D volumes to the case of continuous hetero-
geneity, it argued that it would become increasingly
difficult to rigorously generalize the traditional
expectation–maximization and branch-and-bound
algorithms to high-dimensional latent spaces that
involve viewing direction, translation and complex
conformation variables. Therefore, they propose
formal MCMC algorithms and speculate about pos-
sible use of variational approximations.
Remark 3 To contrast between Eqs. (8) and (5),

we note that the coefficients ak in (8) are a shared
part of the model, whereas the coefficients bm

k in
(5) are different for each individual particle image.
Remark 4 In fact, the linear density model in

covariance approach in Eq. (5) is a special case of
nonlinear models. For example, one can define s
to simply be the vector of coefficients
s :¼ b1; b2; . . . :bKð Þ, so that
Vm rð Þ ¼ V sm; rð Þ ¼ X 0 þ

PK
k¼1b

m
k Xk .
CryoDRGN

CryoDRGN59,60 introduces new ideas inspired by
the success of Variational AutoEncoders (VAEs)61

in other applicationsH. VAEs have two components,
an encoder which is optimized to provide approxima-
tions of the distribution of latent variables, and a de-
coder, which is optimized to reproduce particle
images given the latent variables as inputs. Figure 2
is a schematic illustration of the cryoDRGN architec-
ture. Many of the neural network based approaches
discussed in the remainder of this section have an
analogous architecture.

https://cb.csail.mit.edu/cb/cryodrgn
https://cb.csail.mit.edu/cb/cryodrgn


Figure 2. CryoDRGN architecture. In order to train the encoder and the decoder networks, a particle image I i is
given as input to the encoder, which outputs a latent space representation (or conformation variable) si of the particle
image. Then, the decoder network takes si and the pose variable /i as input and outputs a projected image eI i of the
estimated volume. The loss L I i ; eI i� �

between the input particle image and the output image is computed and the
weights of the networks are adjusted accordingly. The GMM and GMM with folding constraints models described in
the ‘‘GMM model’’ and ‘‘GMM with folding constraints’’ sections follow a similar workflow, with the most significant
difference being that the decoder outputs the atom positions in the conformation corresponding to si , which are then
used to generate the output particle image eI i .
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Remark 5 The use of a deep neural network in
CryoDRGN and other methods below might create
a perception that CryoDRGN is somehow
pretrained on some dataset with many known
structures; in fact, rather than being pre-trained,
CryoDRGN fits the weights of the neural networks
separately for each dataset to which it is applied.
CryoDRGN’s decoder is a hyper-molecule

function V s; rð Þ, implemented as a standard
multilayer perceptron (MLP), with an interesting
twist. The conformation latent variable s (typically
8 dimensional) feeds into the MLP in the
traditional way. The coordinates r ¼ r 1; r 2; r 3ð Þ (in
the Fourier-Hartley domain) first go through
positional encoding where each of the three
coordinates is augmented; for example, the
coordinate r 1 is augmented by the vector ~r1 with:

~r1 2i½ � ¼ sin r 1Np 2=Nð Þ2i=N
� �

; ð9Þ
~r1 2i þ 1½ � ¼ cos r 1Np 2=Nð Þ2i=N

� �
; ð10Þ

where i ¼ 1; . . . ;N=2, and N is the size of the box
containing the volume of interest. The positional
encoding modification to the MLP by augmenting the
input vectors has been used in transformers and vision
applications; it plays an important role in fitting high-
frequency components of functions.62

In order to produce a tomographic projection from
a particular viewing direction and conformation s,
CryoDRGN computes a grid of points r 1;1; r 1;2; . . .
in the Fourier-Hartley domain and evaluates
V s; r 1;1ð Þ;V s; r 1;2ð Þ; . . . at these points. The grid of
values is the Hartley transform of the particle image.
9

Previous algorithms store or compute for each
particle image Ii some form of explicit latent
variables such as the viewing direction Ri and
conformation si . For example, MCMC software
stores these latent variables and software like
RELION compares each particle image to
projections of different volumes in different viewing
directions. Instead of storing the explicit si for
each particle image Ii , CryoDRGN’s encoder is
optimized to take the image Ii itself as input and
compute a sample from p si jIið Þ. Anecdotal
evidence points to similarities between the
encoder implementation and explicit latent
variables.63

The optimization objective for the encoder and
decoder networks is the standard VAE variational
lower bound of the model evidence, which
includes the reconstruction error as the mean
squared error between the reconstructed image
and the input image. We note that the encoder
and decoder networks are optimized together for
each dataset; neither is pretrained on other
datasets.
The original CryoDRGN implementation was

demonstrated with known precomputed viewing
directions. Followup work64 demonstrated a hybrid
use of explicit latent variables for viewing directions
and translations, and an encoder for the conforma-
tion variables. Related work on CryoFIRE65 uses an
encoder that outputs both conformation and pose
variables using amortized inference, while in,66

score-based generative diffusion models67,68 are
used to sample from the latent space of
CryoDRGN, showing significant improvements.
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Adding model constraints

The functions used to express hyper-molecules
in55,56 and the deep learning version in59 are very
generic in their ability to express a wide variety of
changing volumes; including ones that are not phys-
ically plausible. In,56 it is pointed out that complex
heterogeneity presents an information problem.
This can be illustrated by looking at a simplified dis-
cretized case. Suppose that a good reconstruction
of a volume requires 105 particle images. Now sup-
pose that the molecule has a flexible region and that
the flexibility can be adequately represented using
10 states, each requiring 105 particle images for a
good reconstruction (we will see in the discussion
that continuous models may require fewer particle
images, but the principle is similar). For conve-
nience, let us assume that the particle images are
conveniently equally distributed among the different
states and that we are able to associate each image
to the correct state. Now suppose that there are 2
such flexible regions; this means that there are
100 combinations of states of the two regions, each
requiring 105 particle images. The number of parti-
cle images grows exponentially fast with the com-
plexity and number of regions (if not mitigated
somehow).56 proposes to enforce structure in the
models that capture any of the physical properties
that can be assumed about themolecule; the exam-
ple presented there is explicit decomposition of the
volume into regions that are allowed move indepen-
dently, and it is argued that the number of coeffi-
cients describing the problem (loosely reflecting
on the number of particle images) grows linearly
(or even remains constant) as the number of
regions grows. We note that in contrast to the
multi-body approach to decomposition of the vol-
ume (the ‘‘Multi-body extension of traditional analy-
sis’’ section), the components in the example in56

are not rigid.
The following sections discuss several different

approaches that enforce models on hyper-
molecules.
GMM Model

A Gaussian mixture model (GMM) was
introduced in69 as a different model for expressing
V s; rð ÞI. In GMM models, the volume is represented
as a sum of N Gaussians centered at spatial coordi-
nates rj sð Þ� �N

j¼1
� R3, which vary continuously with

the conformation variable s:

V s; rð Þ ¼
XN
j¼1

aj sð Þe	jr	rj sð Þj2

2rj sð Þ2 ; ð11Þ

where aj sð Þ� �N
j¼1

; rj sð Þ� �N
j¼1

� Rþ are the amplitudes

and widths of the Gaussians respectively and are also
dependent on the conformation variable s.
I The code is distributed as part of the EMAN2 software at https://
blake.bcm.edu/emanwiki/EMAN2/e2gmm.

10
The GMM model in69 is based an autoencoder
architecture like CryoDRGN. The decoder in this
model takes the latent conformation variable s (with
a default dimension four) and produces a list of cen-
ters rj sð Þ� �N

j¼1
that can then be used to evaluate the

tomographic projection for any viewing direction.
The encoder computes the latent conformation vari-
able s for any given images (with notable differ-
ences that we omit here from the CryoDRGN
encoder).
The training of the neural network is performed in

two steps: the encoder is first trained to match a
pre-computed neutral structure corresponding to
s ¼ 0 , and then both the encoder and the decoder
are trained to match the variability in the data. The
second step of the training is similar to that of
CryoDRGN variable /i .
Remark 6 The NMA representation using

pseudoatoms with locations given in (7) is a
special case of the GMM representation in (11)
(but not the specific algorithm discussed in this
section). We can see this by letting aj sð Þ ¼ a0 and
rj sð Þ ¼ r0 for all j ¼ 1; . . . ;N, where a0 and r0

are the fixed values of the amplitudes and widths
of the pseudoatoms in (7) and by letting

rj smð Þ ¼ r0j þ
XK
k¼1

bk smð ÞDkj ; ð12Þ

where r0j 2 R3 is the vector of coordinates corresponding

to the j-th pseudoatom in the reference structure,

Dk j 2 R3 contains the entries of the normal mode Dk

corresponding to the j-th pseudoatom, and the normal

mode coefficients bm
k :¼ bk smð Þ are functions of the

conformation variable sm .
GMM with folding constraints

The methods described thus far make limited use
of what we know about the molecules imaged in the
experiment. Biomolecules are a folded chain of
amino acids, and in many cases one has
information about the chain and even some
approximation of the folded structure. This
information can be incorporated into a more
nuanced model.
AtomVAE70 J models the molecule at the atomic

level, expressing f s; rð Þ as aGMMmodel where each
atom (other than hydrogen) is represented by a
Gaussian. The architecture of AtomVAE is also
based on a VAE approach, where the encoder con-
sists of three networks: one that takes a particle
image and encodes it into a general latent vector,
one that takes the general latent vector and encodes
the conformational landscape, and one that take the
general latent vector and encodes the pose. The
decoder takes the sampled latent conformation vec-
tor and the pose as inputs and outputs the transla-
tions with respect to a neutral structure, previously
J The survey in9 refers to this method as AtomVAE.

https://blake.bcm.edu/emanwiki/EMAN2/e2gmm
https://blake.bcm.edu/emanwiki/EMAN2/e2gmm
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obtained using homogeneous reconstruction (or
purely computational methods).
CryoFold71 models the molecule at the residue

level, expressing f s; rð Þ as a GMM model where
each amino acid is represented by two Gaussians,
one for the backbone and one for the side chain. It
assumes known, fixed, viewing directions and uses
a VAE architecture similar to that of CryoDRGN and
outputs the translations of the Gaussians with
respect to a neutral structure, as done by AtomVAE.
In both methods, structural constraints related to

the positions of the atoms in the backbone and
the side chains are specified in the loss function,
in addition to the error in the reconstructed
images. They have been demonstrated on
synthetic data and they require a good
initialization with a reasonable reference structure.

Deformation based models

It is appropriate to model many cases of
continuous heterogeneity as deformations of a
reference volume; this may exclude the binding
and unbinding of subunits or ligands, such as
elongation factors on ribosomes. Given a
reference volume V 0 rð Þ, a hyper-molecule
description of the deformed volume can loosely be
formulated as

V s; rð Þ ¼ V 0 g s½ �	1
rð Þ

� �
;

where g s½ � expresses the deformation of the reference to
the conformation s (a more nuanced technical
description may also account for the Jacobian of the
deformation). Deformation based models attempt to fit
both the reference volume V 0 rð Þ and the deformations
g sð Þ.
Deformation functions based on Zernike

polynomials have been used in,72–74 which combine
ideas from manifolds of volumes described in the
‘‘Manifolds of Volumes’’ section. 3DFlex75 uses a
deep neural network that produces a deformation
field generator g as a function of the latent conforma-
tion variable s. 3DFlex optimizes the parameters of
the deformation generator network, the canonical
volume, and the latent conformation variable of each
particle image in a maximum-likelihood framework.
The viewing directions and the CTF parameters are
assumed to be known, but can be further refined by
3DFlexK.
Follow up work on the GMM method in69 is pre-

sented in,76 which combines physical constraints
and deformation models in a more scalable version
of the original GMM algorithm.

Bypassing the Estimation of Latent
Variables

Let us assume that the particle images are
generated according to a classic generative
K 3DFlex is part of the CryoSPARC software package (link in
footNote 1).
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model, where latent variables such as
conformation, viewing direction, translation (and
possibly CTF parameters) are selected at random
and used to generate a particle image along the
lines of Eq. (1). Let us further assume that the
distributions of these latent variables and the
noise are known. In theory, this would give us a
distribution of particle images that is conditional on
the hyper-molecule.
It was shown in77–80 that a given distribution of

particle images can be theoretically traced back to
a unique volume (up to trivial symmetries). For sim-
plicity, we limit the description in this section to the
problem of homogeneous reconstruction when
there is no conformational heterogeneity in the data
and we will point to the way it generalizes to the
heterogeneous case without delving into details.
One of the methods to compute parameters from

a distribution in many statistical problems is the
method of moments, where moments of a
distribution are computed and used to estimate
the parameters of the distribution. Indeed, back in
the 1970s, Zvi Kam found that one can compute
moments of the distribution of observed images
and use these to reconstruct the volume.81 The
method has been further developed in recent years,
for example in.79,80,82 Remarkably, this can be
applied directly to micrographs, without particle
picking.83 This approach, as well as the broader
area of multi-reference alignment, has been shown
to extend to the case of heterogeneity (e.g.,84,85).
Recently, machine learning approaches have

emerged for approximating distributions.
CryoGAN78 is a machine learning approach that
directly finds a volume that generates the distribu-
tion of observed particle images. We note that, in
practice, the data consists of a large but finite num-
ber of samples from the distribution, not the distribu-
tion itself. Considering the many latent variables
(viewing direction, shifts, CTF), it might be surpris-
ing that this is enough for CryoGAN to recover a vol-
ume, but the idea has been demonstrated in.78 The
method has been extended to the case of hetero-
geneity in.86
Discussion and Perspectives

Having surveyed the main approaches to
continuous heterogeneity analysis, in this section
we discuss some of the broader questions that
these approaches pose.
Reading the output: Explicit models vs.
reconstruction from images

Given the output of a continuous heterogeneity
reconstruction algorithm, there are generally two
approaches to obtaining the volume
corresponding to a conformation at a specific
value of the conformation variable s ¼ s
.
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One approach involves selecting all the particle
images Iif g that have been assigned values sif g
that are within a certain distance from s
 and feed
them to a homogeneous reconstruction algorithm.
This produces one volume that represents that
specific region of the conformation space.
Alternatively, one can directly use the explicit
model generated by the algorithm. For example,
the hyper-molecule models described in the
‘‘Nonlinear Models: Hyper-Molecules’’ section
have an internal representation of each state,
which allows the user to generate the volume
V s
; �ð Þ. Similarly, Eq. (6) gives a way to visualize
principal volumes.
Some of the methods presented in this survey

rely on homogeneous reconstruction to generate
volumes with different conformations, as they lack
an explicit representation of the volumes (the
manifold of images methods in the ‘‘Manifold
Learning on Particle Images’’ section are an
example). However, most of the other methods
lend themselves to both approaches to generating
heterogeneous volumes. In this case, the
homogeneous reconstructions from subsets of the
particle images can be used as a form of
validation, as the final volumes are reconstructed
directly from the data: if the volumes appear to be
high-resolution and biologically plausible, users
tend to accept them as a successful run of the
algorithm. Such a result is especially convincing
when generating volumes directly from the model
would result in volumes that are relatively low-
resolution due to model constraints such as a
limited number of principal volumes computed in
the principal volume approach or a small number
of Gaussians in the GMM models. Furthermore,
as models get more elaborate (e.g., atomic
models), there are concerns that the results
present artifacts that reflect bias and error in the
model, which are somewhat mitigated if one
obtains homogeneous reconstructions from
subsets of the data.
That being said, visualization based on models

can provide higher-resolution volumes, which
reflects the advantages of continuous models over
discrete reconstructions. As an illustrative
example, consider a molecule with one flexible
region that requires 10 separate discrete models
to be fully captured in the reconstruction, for which
we are given 106 particle images. If we restrict our
attention to the rigid part of the volume, applying
one of the hyper-molecule algorithms would use
all 106 particle images for the reconstruction of
this region, while selecting subsets of 105 particle
images for homogeneous reconstruction of one of
the conformations leads to only this subset of the
data being used to reconstruct the rigid part,
which would otherwise benefit from the full
dataset. Modeling considerations and the ability to
refine the viewing directions taking into account
12
flexible regions extends this argument to other
less obvious cases.
Continuous vs. discrete models

Continuous functions can be approximated by a
sufficiently large number of discrete samples, and
therefore it is compelling to deduce that traditional
discrete 3D classification is a good discretization
of continuous heterogeneity. In this section, we
point to several advantageous features of
continuous models.
First, in contrast to discrete heterogeneity

analysis, continuous heterogeneity analysis does
not require the user to specify the number of
classes to be reconstructed. This choice, which is
not trivial when the underlying heterogeneity is
concentrated in discrete states and influences the
resolution of the inferred model, is particularly
difficult when the heterogeneity is inherently
continuous. Instead, approaches for continuous
heterogeneity analysis explicitly model the
continuum of states, where states that are
sufficiently distinct in the particle images tend to
naturally appear as dense “islands” on the
conformation manifold.
Second, methods for continuous heterogeneity

are able to use all the available data to produce
higher resolution volumes in any conformation,
while discrete heterogeneity approaches only use
a subset of the data for a particular conformation.
The example given in the ‘‘Reading the output:
Explicit models vs. reconstruction from images’’
section illustrates this aspect: while the rigid part
of a volume can benefit from the full dataset, 3D
classification methods only use the particle
images corresponding to one specific
conformation to reconstruct the volume, including
the rigid part, leading to lower resolution than
possible. Here, one could correctly argue that the
rigid region can be reconstructed using
homogeneous reconstruction separately from the
heterogeneous region, as it is done in multi-body
refinement (the ‘‘Multi-body extension of traditional
analysis’’ section). However, continuous
heterogeneity analysis may still perform better, as
it can update the viewing directions estimations
(potentially yielding better estimation of the
conformation variable) and it models the
continuum of states more accurately than discrete
models, which do not have a notion of
“neighboring states”. For example, the
deformation model described in the ‘‘Deformation
based models’’ section severely restricts the
space of possible conformations to a (limited)
deformation of a reference volume, and therefore
all the particle images from all conformations
contribute high-resolution information to the
reference volume.
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Third, an implication of the previous argument is
that continuous heterogeneity analysis has an
advantage in analyzing rare conformations using
the continuity between conformations. Using the
deformation model as an example, when the
deformation assumption is applicable, this model
constructs a high resolution reference volume
based on the highly populated conformations and
uses the particle images from a rare conformation
effectively to determine the path of deformation of
the reference volume. This leads to a high
resolution approximation of the rare conformation
as the correct deformation of the reference volume.
One last argument regards the advantage of

continuous heterogeneity analysis over multi-body
analysis (the ‘‘Multi-body extension of traditional
analysis’’ section). While it has been implemented
as an extension of traditional reconstruction
algorithms, multi-body analysis can also be seen
as a special case of the hyper-molecule model.
Specifically, is has proven to be very effective in
the analysis of rigid components moving with
respect to each other, but it falls short when such
structural assumptions do not hold and it fails to
resolve the interface regions between the rigid
components, issues which are addressed in the
hyper-molecule models for examples.
Finally, it is worth noting that high resolution

homogeneous reconstruction and traditional 3D
classification as well as multi-body analysis are
available in mature software and are well
understood by practitioners. In contrast,
practitioners still face the dilemma of which
continuous heterogeneity software, model
assumptions and parameters to use in continuous
heterogeneity analysis, so it is not the aim of this
article to argue that the problem has been solved
or that higher resolution is always easily
attainable, but to highlight conceptual advantages
on which these algorithms increasingly capitalize.

Outliers, junk, and rare conformations

Practitioners have long used 2D and 3D
classification not only to identify actual
conformations, but also to identify “junk”; particles
that produce low quality volumes and objects that
were incorrectly picked as particles are discarded.
One of the caveats in this procedure is that it is
difficult to determine whether high quality particle
images are also discarded. Perhaps most
importantly, it is likely that (valid) particle images
from rare conformations are discarded, too. This is
an undesirable outcome of the reconstruction
algorithm not being able to create high quality
coherent classes using them.
Preliminary informal evidence suggests that an

analogous procedure is applicable to different
algorithms for continuous heterogeneity analysis:
junk particles appear to be “pushed” out to
separate regions of the conformation space,
reducing their influence on the “valid” regions,
13
which in this case correctly include particles
corresponding to the rare conformations in
addition to the ones that would be used by
homogeneous and discrete heterogeneous
algorithms. It is therefore conceivable that some of
the continuous heterogeneity analysis algorithms
strike a better balance between using rare-
conformation particle images and discarding junk.
Interpretation of output

The output of continuous heterogeneity analysis
varies considerably between different methods.
However, there are two main families of outputs.
One is a model of the space of molecular
structures (e.g., the principal volume expansion of
Vm in (5), the hyper-molecule function V s; rð Þ in
(8)), which does not exist in the image manifold
approach in the ‘‘Manifold Learning on Particle
Images’’ section. The other family of outputs
consists of the estimates of the conformation
variable s for each particle image, which does not
exist in the methods in the ‘‘Bypassing the
Estimation of Latent Variables’’ section.
From both types of outputs, one can obtain a low

dimensional representation of the latent
conformation space of s, where it is common to
try to identify physically meaningful clusters or
manifolds. For example, in,20 the density of the par-
ticles in the latent space is related to the energy
landscape of the ribosome. In other work, various
dimensionality reduction and clustering algorithms
are applied to the latent space to identify dominating
conformations. We note, however, that the latent
conformation variable does not immediately corre-
spond to a physically meaningful and interpretable
quantity, it is not necessarily unique even up to triv-
ial symmetries and can in principle be arbitrarily
deformed (for some motivating examples, see87).
Different algorithms and even the same algorithm
with a different random seed can produce different
latent space representations. Similarly, different
post-processing dimensionality reduction and clus-
tering algorithms (and again, even different random
seeds) can produce different results. In cases of rel-
atively simple heterogeneity, it is plausible that an
expert user would be able to probe structures in
the latent space together with the models or recon-
structions associated with them in order to under-
stand the mechanisms that it captures. However,
complex heterogeneity and more automated tools
may require more work on the interpretation of the
latent space.
Mathematically, this is a problem related to the

manifold metric as transformed by the
measurement and reconstruction process, and
while it has been studied in other fields,88–91 it still
requires further investigation in a cryo-EM context.
Moreover, establishing an appropriate metric for
the conformation space that is physically meaning-
ful is a problem that has not been explored yet.
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Validation

Validation has always been a nuanced problem in
cryo-EM. A common sanity check for homogeneous
reconstruction is the Fourier shell correlation (FSC)
procedure92,93: the data is split into two subsets and
two distinct reconstructions are obtained from them.
The correlations between the two volumes are com-
puted for each frequency radius and the resolution
of the final reconstruction is given by the frequency
radius where the FSC curve drops below a specific
value (usually 0.143). Above this resolution, the
reconstruction is considered to overfit the noise. In
addition, a qualitative procedure is for an expert to
evaluate and confirm the plausibility of the recon-
structed molecule.
There is no clear solution for validating results of

continuous heterogeneity analysis. To illustrate
the difficulty, consider two hyper-molecules that
are generated by one method from two separate
subsets of the data. Even if the solutions are
equivalent, they can assign different values of s to
the same conformation, in which case it is not
clear how to compare the two outputs. One idea
proposed in75 for deformation models (the ‘‘Defor-
mation based models’’ section) is to compute the
FSC between two reference models that the algo-
rithm computes for two different subsets of the data.
However, this idea only applies to deformationmod-
els, since other methods do not necessarily com-
pute a reference volume.
Given the wide variety of families of ideas for

analysis of continuous heterogeneity and the
different types of output they produce, it is even
more challenging to find metrics that are
applicable to all methods. Beyond the evaluation
of outputs for individual problems, there is a desire
to determine which tools perform best, which
reinforces the need for evaluation metrics and
benchmark datasets, something that is not
currently available. Having said this, given the
many forms of heterogeneity in applications and
the fundamental differences between the
algorithms for heterogeneity analysis, one should
be cautious that the metrics of choice and the
benchmark datasets used do not exclude some of
the existing and new ideas.

Conclusions

In this survey, we covered a broad range of
methods for analyzing continuous heterogeneity in
cryo-EM. In addition, we highlighted the
advantages of continuous heterogeneity analysis
and the way they circumvent some of the
tradeoffs that practitioners encounter in traditional
methods involving homogeneous reconstruction,
discrete heterogeneous reconstruction and multi-
body analysis.
As evident in this survey, many different

approaches have been proposed in recent years.
Most of these ideas are still in active development
14
and it is likely that new ideas will emerge in the
coming years. Some of the algorithms, like the
various members of the non-linear models in the
‘‘Nonlinear Models: Hyper-Molecules’’ section,
share conceptual similarities that make it plausible
that we will see convergent software packages
that offer multiple and customizable models, as
envisioned in.56 At the same time, there are signifi-
cant differences between the methods, making dif-
ferent approaches well-suited for different
problems.
One of the open problems in this area is the

validation of the results of the algorithms. A
related difficulty is in comparing different
algorithms in the absence of good metrics and
benchmarks; indeed, the different approaches
differ even in the form of output they produce. A
silver lining in the large number of fundamentally
different algorithms that are becoming available is
that one could conceivably apply several different
algorithms to the same dataset and examine how
well their conclusions agree qualitatively, which
could serve as a temporary form of validation
while the area matures.
Finally, we have we witnessed in recent years the

immense success of protein structure prediction
algorithms such as AlphaFold94 and
RoseTTAfold.95 While these algorithms are not cur-
rently applicable to continuous heterogeneity (and,
arguably, neither to discrete heterogeneity), it is
plausible that they will evolve in this direction as a
next step in complexity. Conversely, as cryo-EM
datasets become more massive and broader in
scope, incorporating physical models as priors or
constraints obtained from structure prediction soft-
ware will become a necessity. Therefore, there is
an opportunity for continuous heterogeneity analy-
sis methods to bridge the gap between such soft-
ware and the massive experimental datasets.
Preliminary examples of this general direction can
be found in,70 which integrates insights from Alpha-
Fold, and in.54

While we do not discuss cryo-electron
tomography (cryo-ET) explicitly in this survey,
many of the approaches to continuous
heterogeneity in cryo-EM can be generalized to
cryo-ET. One of the complications in cryo-ET is
that the targets of the analysis are typically
measured in situ, and do not float freely as in
typical cryo-EM. The continuous heterogeneity
model may capture heterogeneity in the
environment instead of heterogeneity in the target
(which may or may not be a desirable result,
depending on the application).
CRediT authorship contribution
statement

Bogdan Toader: Conceptualization, Writing –
original draft, Writing – review & editing. Fred J.
Sigworth: Conceptualization, Writing – original



B. Toader, F.J. Sigworth and R.R. Lederman Journal of Molecular Biology 435 (2023) 168020
draft, Writing – review & editing, Funding
acquisition. Roy R. Lederman: Conceptualization,
Writing – original draft, Writing – review & editing,
Supervision, Funding acquisition.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known
competing financial interests or personal relationships
that could have appeared to influence the work
reported in this paper.

Acknowledgments

The authors would like to thank David Silva Sanchez for
his help.
The work is supported in part by NIH grants
R01GM136780, R01NS021501 and AFOSR FA9550-
21-1-0317.

Received 16 November 2022;
Accepted 16 February 2023;

Available online 28 February 2023

Keywords:
cryo-EM;

single particle reconstruction;
continuous heterogeneity;

conformation manifold

A For software, see for example the RELION https://relion.readthe-
docs.io or CryoSPARC https://cryosparc.com packages.
References

1. (2016). Method of the year 2015. Nat. Methods 13(1), 1–1.

2. Bendory, T., Bartesaghi, A., Singer, A., (2020). Single-

particle cryo-electron microscopy: mathematical theory,

computational challenges, and opportunities. IEEE Signal

Process. Mag. 37 (2), 58–76.

3. Singer, A., Sigworth, F.J., (2020). Computational methods

for single-particle cryo-EM. Ann. Rev. Biomed. Data Sci. 3,

163–190.
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